- Use Maclaurin's Theorem to **derive** the series expansion for cos(x), giving the first three non-zero terms. Hence, obtain the first three non-zero terms of the series expansion for:
 - (i) $\cos 2x$
 - (ii) $\cos^2 x$
- State the Maclaurin expansion for $\ln(1+x)$ and $\sin(x)$ and use them to obtain a power series expansion for $\ln(1+\sin(x))$ as far as the term in x^4 . What is the domain of validity of this expansion?
- 3) Use the exponential series to calculate accurately to 3 decimal places:
 - (i) √€
 - (ii). $\frac{1}{e}$
 - (iii) $e^{0.1}$
- 4) Derive the Maclaurin series expansion for

$$f(x) = \frac{1}{1+x-2x^2}.$$

[Hint: use partial fractions]

5) Derive the power series

$$\tan^{-1}(X) = X - \frac{X^3}{3} + \frac{X^5}{5} - \frac{X^7}{7} + \dots$$

[Hint: for $f(x) = \tan^{-1}(x)$, $f'(x) = \frac{1}{1+x^2} = (1+x^2)^{-1}$;] Deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{5} + \dots$

- 6) Show that the equation $x^2 x^2 = 0 = 0$ can be rearranged in the following different ways,
 - (a) $X = (X^2 + 6)^{\frac{1}{3}}$
 - (b) $X = (X^3 6)^{\frac{1}{2}}$
 - (c) $X = \left(X + \frac{6}{X}\right)^{\frac{1}{2}}$

and determine which of them give(s) a convergent iterative procedure for finding the root near x = 2. Find this root accurate to 3 decimal places.